翻訳と辞書
Words near each other
・ Causse Méjean
・ Causse-Bégon
・ Causse-de-la-Selle
・ Causse-et-Diège
・ Caussens
・ Causses
・ Causses and Cévennes
・ Causses-et-Veyran
・ Caussin
・ Caussiniojouls
・ Caussols
・ Caussou
・ Caustella
・ Caustic
・ Caustic (band)
Caustic (mathematics)
・ Caustic (optics)
・ Caustic Christ
・ Caustic embrittlement
・ Caustic Eye Productions
・ Caustic Grip
・ Caustic humour
・ Caustic Love
・ Caustic pencil
・ Caustic Resin
・ Caustic Truths
・ Caustic Window (album)
・ Caustic Zombies
・ Caustis
・ Caustis flexuosa


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Caustic (mathematics) : ウィキペディア英語版
Caustic (mathematics)

In differential geometry and geometric optics, a caustic is the envelope of rays either reflected or refracted by a manifold. It is related to the concept of caustics in optics. The ray's source may be a point (called the radiant) or parallel rays from a point at infinity, in which case a direction vector of the rays must be specified.
More generally, especially as applied to symplectic geometry and singularity theory, a caustic is the critical value set of a Lagrangian mapping where is a Lagrangian immersion of a Lagrangian submanifold ''L'' into a symplectic manifold ''M'', and is a Lagrangian fibration of the symplectic manifold ''M''. The caustic is a subset of the Lagrangian fibration's base space ''B''.
==Catacaustic==
A catacaustic is the reflective case.
With a radiant, it is the evolute of the orthotomic of the radiant.
The planar, parallel-source-rays case: suppose the direction vector is (a,b) and the mirror curve is parametrised as (u(t),v(t)). The normal vector at a point is (-v'(t),u'(t)); the reflection of the direction vector is (normal needs special normalization)
:2\mbox_nd-d=\frac-d=\frac
Having components of found reflected vector treat it as a tangent
:(x-u)(bu'^2-2au'v'-bv'^2)=(y-v)(av'^2-2bu'v'-au'^2).
Using the simplest envelope form
:F(x,y,t)=(x-u)(bu'^2-2au'v'-bv'^2)-(y-v)(av'^2-2bu'v'-au'^2) =x(bu'^2-2au'v'-bv'^2)
-y(av'^2-2bu'v'-au'^2)
+b(uv'^2-uu'^2-2vu'v')
+a(-vu'^2+vv'^2+2uu'v')
:F_t(x,y,t)=2x(bu'u''-a(u'v''+u''v')-bv'v'')
-2y(av'v''-b(u''v'+u'v'')-au'u'')
+b( u'v'^2 +2uv'v'' -u'^3 -2uu'u'' -2u'v'^2 -2u''vv' -2u'vv'')
+a(-v'u'^2 -2vu'u'' +v'^3 +2vv'v'' +2v'u'^2 +2v''uu' +2v'uu'')
which may be unaesthetic, but F=F_t=0 gives a linear system in (x,y) and so it is elementary to obtain a parametrisation of the catacaustic. Cramer's rule would serve.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Caustic (mathematics)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.